Chapters

Hide chapters

Data Structures & Algorithms in Swift

Fifth Edition · iOS 18 · Swift 6.0 · Xcode 16.2

14. Binary Search Trees
Written by Kelvin Lau

Heads up... You’re accessing parts of this content for free, with some sections shown as scrambled text.

Heads up... You’re accessing parts of this content for free, with some sections shown as scrambled text.

Unlock our entire catalogue of books and courses, with a Kodeco Personal Plan.

Unlock now

A binary search tree, or BST, is a data structure that facilitates fast lookup, insert and removal operations. Consider the following decision tree where picking a side forfeits all the possibilities of the other side, cutting the problem in half.

no yes no yes no yes no yes yes no Should I go the gym? Did I go yesterday? Did I go jogging yesterday? Am I still feeling sore? Did I run 5km? Go to the gym Go to the gym Go to sleep Rest for the day Break Go to the gym Did you slack off in the last session?

Once you make a decision and choose a branch, there is no looking back. You keep going until you make a final decision at a leaf node. Binary trees let you do the same thing. Specifically, a binary search tree imposes two rules on the binary tree you saw in the previous chapter:

  • The value of a left child must be less than the value of its parent.
  • Consequently, the value of a right child must be greater than or equal to the value of its parent.

Binary search trees use this property to save you from performing unnecessary checking. As a result, lookup, insert and removal have an average time complexity of O(log n), which is considerably faster than linear data structures such as arrays and linked lists.

In this chapter, you’ll learn about the benefits of the BST relative to an array and, as usual, implement the data structure from scratch.

Case study: array vs. BST

To illustrate the power of using a BST, you’ll look at some common operations and compare the performance of arrays against the binary search tree.

Consider the following two collections:

1 25 88 18 45 4 40 105 20 77 70 40 18 77 1 20 70 105 4 25 45 88

Lookup

There’s only one way to do element lookups for an unsorted array. You need to check every element in the array from the start:

0 89 76 17 44 7 88 022 84 13 79
Doeqdsajr zub 701

24 47 89 89 592 10 43 7 72 5 74
Vaangnusy wih 725

Insertion

The performance benefits for the insertion operation follow a similar story. Assume you want to insert 0 into a collection:

9 20 57 14 45 0 90 647 93 05 02 7 1 42 40 85 77 1 82 382 93 64 25
Ulkirhulk 4 eg vacder izhen

15 10 28 42 345 51 25 0 19 3 28

Removal

Similar to insertion, removing an element in an array also triggers a shuffling of elements:

7 30 53 58 71 8 22 322 07 00 78 1 98 37 07 9 38 702 12 02 53 hecixu 31
Fuqexarf 59 vbix xlu ivfac

98 60 74 13 301 14 02 9 45 4 67

Implementation

Open up the starter project for this chapter. In it, you’ll find the BinaryNode type that you created in the previous chapter. Create a new file named BinarySearchTree.swift and add the following inside the file:

public struct BinarySearchTree<Element: Comparable> {

  public private(set) var root: BinaryNode<Element>?

  public init() {}
}

extension BinarySearchTree: CustomStringConvertible {

  public var description: String {
    guard let root else { return "empty tree" }
    return String(describing: root)
  }
}

Inserting elements

Per the rules of the BST, nodes of the left child must contain values less than the current node. Nodes of the right child must contain values greater than or equal to the current node. You’ll implement the insert method while respecting these rules.

extension BinarySearchTree {

  public mutating func insert(_ value: Element) {
    root = insert(from: root, value: value)
  }

  private func insert(from node: BinaryNode<Element>?, value: Element)
      -> BinaryNode<Element> {
    // 1
    guard let node else {
      return BinaryNode(value: value)
    }
    // 2
    if value < node.value {
      node.leftChild = insert(from: node.leftChild, value: value)
    } else {
      node.rightChild = insert(from: node.rightChild, value: value)
    }
    // 3
    return node
  }
}
example(of: "building a BST") {
  var bst = BinarySearchTree<Int>()
  for i in 0..<5 {
    bst.insert(i)
  }
  print(bst)
}
---Example of: building a BST---
    ┌──4
  ┌──3
  │ └──nil
 ┌──2
 │ └──nil
┌──1
│ └──nil
0
└──nil
8 2 8 7 7 0 0 0 8 2 zubilsel uvlidugzeb

4 8 0 7 7 4 6 8 7 1 ajmutoxkuv judopjof 0 4 0

var exampleTree: BinarySearchTree<Int> {
  var bst = BinarySearchTree<Int>()
  bst.insert(3)
  bst.insert(1)
  bst.insert(4)
  bst.insert(0)
  bst.insert(2)
  bst.insert(5)
  return bst
}
example(of: "building a BST") {
  print(exampleTree)
}
---Example of: building a BST---
 ┌──5
┌──4
│ └──nil
3
│ ┌──2
└──1
 └──0

Finding elements

Finding an element in a BST requires you to traverse through its nodes. It’s possible to come up with a relatively simple implementation by using the existing traversal mechanisms that you learned about in the previous chapter.

extension BinarySearchTree {

  public func contains(_ value: Element) -> Bool {
    guard let root else {
      return false
    }
    var found = false
    root.traverseInOrder {
      if $0 == value {
        found = true
      }
    }
    return found
  }
}
example(of: "finding a node") {
  if exampleTree.contains(5) {
    print("Found 5!")
  } else {
    print("Couldn’t find 5")
  }
}
---Example of: finding a node---
Found 5!

Optimizing contains

You can rely on the rules of the BST to avoid needless comparisons. Back in BinarySearchTree.swift, update the contains method to the following:

public func contains(_ value: Element) -> Bool {
  // 1
  var current = root
  // 2
  while let node = current {
    // 3
    if node.value == value {
      return true
    }
    // 4
    if value < node.value {
      current = node.leftChild
    } else {
      current = node.rightChild
    }
  }
  return false
}

Removing elements

Removing elements is a little more tricky, as you need to handle a few different scenarios.

Case 1: Leaf node

Removing a leaf node is straightforward; simply detach the leaf node.

4 8 5 0 0 6
Sihanaxc 6

Case 2: Nodes with one child

When removing nodes with one child, you’ll need to reconnect that one child with the rest of the tree:

3 7 0 7 4 8
Fobuvahx 5, mwiwn muk 0 rhevy

Case 3: Nodes with two children

Nodes with two children are a bit more complicated, so a more complex example tree will better illustrate how to handle this situation. Assume that you have the following tree and that you want to remove the value 25:

66 Qugini 47 69 62 01 87 09 21 11 41 42 55 39 74

26 33 39 05 98 29 79 14 92 56 45 31

51 Foghuxud teqeu 90 44 28 87 15 81 73 14 27 19 09 27

51 59 30 17 83 68 95 68 60 68 66 99 40

Implementation

Open up BinarySearchTree.swift to implement remove. Add the following code at the bottom of the file:

private extension BinaryNode {

  var min: BinaryNode {
    leftChild?.min ?? self
  }
}

extension BinarySearchTree {

  public mutating func remove(_ value: Element) {
    root = remove(node: root, value: value)
  }

  private func remove(node: BinaryNode<Element>?, value: Element)
    -> BinaryNode<Element>? {
    guard let node else {
      return nil
    }
    if value == node.value {
      // more to come
    } else if value < node.value {
      node.leftChild = remove(node: node.leftChild, value: value)
    } else {
      node.rightChild = remove(node: node.rightChild, value: value)
    }
    return node
  }
}
// 1
if node.leftChild == nil && node.rightChild == nil {
  return nil
}
// 2
if node.leftChild == nil {
  return node.rightChild
}
// 3
if node.rightChild == nil {
  return node.leftChild
}
// 4
node.value = node.rightChild!.min.value
node.rightChild = remove(node: node.rightChild, value: node.value)
example(of: "removing a node") {
  var tree = exampleTree
  print("Tree before removal:")
  print(tree)
  tree.remove(3)
  print("Tree after removing root:")
  print(tree)
}
---Example of: removing a node---
Tree before removal:
 ┌──5
┌──4
│ └──nil
3
│ ┌──2
└──1
 └──0

Tree after removing root:
┌──5
4
│ ┌──2
└──1
 └──0

Key points

  • The binary search tree is a powerful data structure for holding sorted data.
  • Elements of the binary search tree must be comparable. You can achieve this using a generic constraint or by supplying closures to perform the comparison.
  • The time complexity for insert, remove and contains methods in a BST is O(log n).
  • Performance will degrade to O(n) as the tree becomes unbalanced. This is undesirable, so you’ll learn about a self-balancing binary search tree called the AVL tree in Chapter 16.
Have a technical question? Want to report a bug? You can ask questions and report bugs to the book authors in our official book forum here.
© 2025 Kodeco Inc.

You’re accessing parts of this content for free, with some sections shown as scrambled text. Unlock our entire catalogue of books and courses, with a Kodeco Personal Plan.

Unlock now