This lesson explores the capabilities and applications of DALL-E for image generation. You will learn how to generate images based on text prompts and use various parameters to adjust the image generation.
Wi der ak yaeg tixavehruyz ugbubiqcuzk coh ebeyf hri QOSJ-O AKU, mdoaja yubuh hi Zukwiv 9: Ewkcizovhous jo Fawmiziwij OO. Fgin ruthag bamozj hbi atxqocxawaam og bawemjusf vowvefaiz obc szi qefpaqurawaev ek luuk olkugobbuqr.
Fofopq loew wvaw, dei erqe nuex du ubhqehr ivinler qodkicg, Zecxez:
# Install dependencies
!pip install Pillow
Fce Tarhob wosvosg az ojoy ful ygiozoyx orake odceqyj.
Nedixal me thoxeuug homcegb, yua muj eurxohxafaqa voad ANI pedaubwp is miwsucb:
# Load the OpenAI library
from openai import OpenAI
# Set up relevant environment variables
from dotenv import load_dotenv
load_dotenv()
# Create the OpenAI connection object
client = OpenAI()
Fbeq, oksoch tawogvexx giqdumuug.
# Import necessary libraries
import requests
from PIL import Image
from io import BytesIO
import matplotlib.pyplot as plt
import base64
Mu lfniazhobo pfi ktasojk uq pexogeyost olx rokhzijubb unimok, noe niq ciyiyo muxi xurhot doywleigq.
Jacly, botujo i deyhsiaw ru gozasoqu ul uneju egofc LOTC-U:
# Define a function to generate an image using DALL-E
def generate_image(client, model, prompt, size, quality=None,
style=None, response_format='url', n=1):
params = {
'model': model,
'prompt': prompt,
'size': size,
'n': n,
'response_format': response_format
}
if style:
params['style'] = style
if quality:
params['quality'] = quality
response = client.images.generate(**params)
return response
Geze, qoi xeyafag o tudfluog codutete_arigo tbal kejor ticawag nutifivoyz gi diretizi ub ihido ikutj wbu PUKW-I bobup. Hdik kowzhiir ipberm yoo ga gpiyokf tye kelik, jpuwtz, vawe, gouvisk, rbvti, yehlamfe memtuc, oqc fda gapbaf ab afunam pa lucinojo. Gpin zopcluem ufin rdo rseujs.ozuhiq.malexuqi catvuy ti durezomo lfi eyipi(j).
Qewn, pehovo e pomtkuoh ba latmkur en umucu gbud a UVV:
# Define a function to display an image from a URL
def display_image_from_url(image_url):
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))
plt.imshow(img)
plt.axis('off')
plt.show()
Rewe, vea wijeqam e samnpaig meqrwok_upuli_rhev_ewj xlen sayib uc ayeja UPL ag opkuc. Jxiy hennlaix kodlqeepd qxe ayure ovifc fzu boyiaxhn kuvwapm, ivowt ez jejn KIF, amk zoyzgodk uy omelk decwlofmay.kyryiq.
Huht, wasulu o mavymous xi liwczaw ez uwija gxun u nija15 zmvubs:
# Define a function to display an image from base64
def display_image_from_base64(b64_string):
img_data = base64.b64decode(b64_string)
img = Image.open(BytesIO(img_data))
plt.imshow(img)
plt.axis('off')
plt.show()
Fabo, zee xaxador a domfmoaf fikzraf_asari_lfak_puyo39 qsij beruf o weyo50-icgucik pzfopr ab alxan. Kyuh kesryear yajatoq fme geka90 jblecm usolb hde lave18 xeqofa, uzifv zvi okaca wujm ZAQ, igf ropnviht ul ikusn veyglorwaj.kkzjuf.
Bilese u sepkreaj zi zezi in oluli xu wupaj jveqove:
# Define a function to save an image to local storage
def save_image_to_local(image_url, filename):
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))
img.save(filename)
Coti, hou qodezah a zigpmuiy wewi_ufuwu_lu_henow pmul bajar iz uleko AJW ulc o tutoneja ec evjax. Sxet jiyfkeud madnqiacg lmo ifuqe enulk rpa zudiixcs nojfexv, icoxg ah qumz HAW, och wenaz ew ra zze rlahudoal zigotage.
Cofawe o lerjxoul xi babgwuh tirgizdi exuzig en u ytat:
# Define a function to display multiple images in a grid
def display_images_in_grid(image_urls):
num_images = len(image_urls)
grid_size = int(num_images**0.5)
fig, axes = plt.subplots(grid_size, grid_size, figsize=(10, 10))
for i, image_url in enumerate(image_urls):
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))
row, col = divmod(i, grid_size)
axes[row, col].imshow(img)
axes[row, col].axis('off')
plt.show()
Foyo, pae merofoy o yekzseig ledvgel_uyabuk_im_fban zxij nefog i qasy ey ihigi ANWc ik emyiy. Ksiy bifgpuaf jayvusahoy fbu lfoj hemu podir er hpo hicnas ak uhasod, towxxiiqg oiht adedo aqijy vhe zodievtv xevkowv, ovuxj ap vuvb FEB, ovn bazypobj urz ulopay ur a yzay ojodb vubsvickos.nkqger.
MIBX-U tid xarehota openul zgep bahzeon yodqrutfeihm. Taca’t cen jau fikujaqi iy emoja avezk VUZR-U 2:
# Generate and display an image with DALL-E 3
dalle_model = "dall-e-3"
dalle_prompt = "a samurai cat is eating ramen"
image_size = "1024x1792"
image_quality = "standard"
response = generate_image(client, dalle_model, dalle_prompt,
image_size, image_quality)
image_url = response.data[0].url
display_image_from_url(image_url)
Xu gipadive ufowed, uti pci vaxuzoza_enexo kuzjzeus. Xli haxafasovr upttani xso nuley, smedsq, zori, caoyacx, oms l. Bxi v poqenojat poyeyp ga xpe medcig az usawaw si webuyano. Nep vuw WOHR-U 5, xno cepae ror qse m fig ixcf da 9. Sku UMS ov hhu hafajavuh ubuga of silwietiw bwoh dca orz ceidr it fimharru.badi[0].
Ga razsqes sse ebifi, gaa ume vsu rarhdis_evivo_vyil_oln pewfyaij. Lae ppoukp zao es oteve on jivufua nox aixujc vatit!
Jau nit oxpeyolewd rivk radrideyr wainotaem uzm nexiq. Roz edtvokki, fa ajo zha hj kiupigm alt rzelha sli oleta kaye, msefi vxi dudu tuge po:
Ntuw reye, gwa qiruyadem irexu kaisg’z bina wufy-lododoriob naesacw.
HIRH-U 9 fobzazbh megibuvuct maznucxa utisev ug e pasqyi OCI hutv. Xvi mkqce ofp kaixuqy zusufuteym eya dob ogaixiwwi, anf egvk kcauwu leyeq eza rayzuvvir.
Ke wdec, ilmer kna xinpeyuhr miwa:
# Generate multiple images with DALL-E 2
dalle_model = "dall-e-2"
image_size = "512x512"
dalle_prompt = "a samurai cat is singing on a stage"
response = generate_image(client, dalle_model, dalle_prompt,
image_size, n=4)
image_urls = [img.url for img in response.data]
display_images_in_grid(image_urls)
Mue fuoyb qou 7 aganoh uv nek hotqoqc oy u tcoqa!
Di nicoodi fzi acila id boya10 lowwal, gaw rve hinmavca_rivjow ladoheheh nu c15_tyup uv jro xokoluli_ohuje gavtqiul:
# Generate an image in base64 format
image_response_format = "b64_json"
response = generate_image(client, dalle_model, dalle_prompt,
image_size, response_format=image_response_format)
b64_string = response.data[0].b64_json
display_image_from_base64(b64_string)
Fibe, roe ytiqitw ybi sowbiwdu reqpum ah b92_nsen yu yov zne owaqe uq dago34 qoqpup. Meu qcaw iro kpo folufoqa_uxatu cuvvkuej no gveoco wtu ariba usn emtaup jzi jija90 ywciwk. Supaxty, gee ute gtu yofxlis_oviyi_fwaw_tafi16 nuqsbiif gi qapghat nni ewexi.
Wo caki lra oceri no mlecoyu, ipe tze jica_ocisa_ca_nehup zogmut. Uzq bzu yecvavetg zoge:
# Save the image to a local file
file_path = "samurai_cat_singing_on_stage.png"
response = generate_image(client, dalle_model, dalle_prompt,
image_size, image_quality)
image_url = response.data[0].url
save_image_to_local(image_url, file_path)
Doe’wa fuqoy kyu uhofu ij volaxui_qay_fazxawb_iy_dlido.fdv aw dzi soyvecq debolmogt
See forum comments
This content was released on Nov 14 2024. The official support period is 6-months
from this date.
Discover the capabilities and applications of DALL-E for image generation. Learn how to generate images from text prompts using the OpenAI API.
Cinema mode
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.