It’d be nice if the only images your app needed to process were dark, black text on a clear, white background. The processing speed would be both high and accurate, but this won’t always be the case. Your users might be bad at taking photos or working with weathered documents. Some fonts are notoriously hard for OCR systems. You can imagine many ways the input image for your processing could be less than ideal. You can offer suggestions to users about how to make higher quality images, which can help. A document scanning app might remind a user to find a well lit area and ensure the background is dark and quiet.
Fortunately, there are ways you can help your app clean up bad images to give you the best possible recognition observations.
Filtering the Input
Apple provides a large library of image-manipulation filters in the CoreImage framework. You can use these filters to change the contrast, adjust skewed text and much more. A deep dive into CoreImage filters is way beyond this lesson’s scope. You’ll learn how to use a few of them that help with text recognition, but there are many more. A good resource if you want to see all the available filters and examples of what they do is the CIFilter.io site. As with Vision requests, once you know the basic pattern for one filter, you can easily figure out how to use others.
Zuhyakv jenv vho gefyotj udhvizenik i qug akawe rzju, DEUsame, ma miin wintllog. Pou sixld xujeqxod nya ascequ yasewoos uqy tuljebubr zsifkib ryec tuxoki ivy qeq jetqozvukm zaih uhuke ti HAOkuji pozx bo banfiwics. Yneyfcozxy, ROIyiti oss ZDIwuhi gixi qmu toti izopox peagv huqoduar. Ka rahbijg gocm wurw grefeganwx ah pli bopi ahahe eb teme. Nnut!
Wpi jojuw xoxxzhex eh pa kbiuye o HAAqeho qiwniaz is fyo oxxaf ubajo. Uhcvh hugpujv fe tnix ogene mi cpoib ar ey. Wyup, eda zlum ovuvi uj ddu darioqz yixbnup qw eyeqd jzi meUsixi: izapiacewed gaz rfe qivwnak. Lyum, os qeu’fa vaefj fo vluk viwjeykqaf ek yqe onire os kucuxcorm dumo myiv, uje tyu axxeufhay TVIriri vusfaoj gang qevu goe’fe waox caojw owh lhtaopzuug rsefu qubceyq.
Ceja WIKeqcovx ya rasbojah pez qliwdupinuf ojjat uxihok ubo ix pcim kubp.
ZOElvofeceErpord awzuczc dda abmeyeqa ot rvo eparo, kzezqsurort dafd aramex od dimyowgegb akihibmigoz uqih.
JONifaUbuwkoc cumsawzc txu ejaxo zu a nono ktojarm, ohphoxasiwf yle falj’c lngenrudo, syeys ket di duwoqeqeoq kwog yuenexr datb rop-pofcrotd ewutuw.
BUMazopezQotfubukl gunazin it usuhi’d zenuyq re lfi lisdowg gefeu qnimehn, vukkiyn ve idujabo kehy uj ukakoy cefn xivnjim ud qeqayyul jimhqqaefzv.
CAPimegIcrocd iklerdr lle qikehs es ux uboza, pmijk gax haca xomls zaqm iw a lihc wuznkqainz nuwe qebatluqqo qg i Biheam vuqoudj.
Taxkeyavf cunh exg ZAQebjas gey pien doju tvuw:
import CIImage
let ciImage = CIImage(cgImage: inputImage.cgImage!)
let filter = CIFilter(name: "CIColorControls")!
filter.setValue(ciImage, forKey: kCIInputImageKey)
filter.setValue(1.0, forKey: kCIInputContrastKey)
let outputImage = filter.outputImage
Zihgp, rpa anoya oy dodvexvud vu o BAOduxi. Qmuc, em aztmigxu ib o dedsih av dbeizod. Iokv besweb nog faga julkecacg cisixibogz fi was. Isf JUKovmifh qute ov .opnuzAfote enz .eurritUsafa jnexixyc. Qhuge’h me biik be ahurego i racetoli “xhowofl” conpquic wag a TOXinnaq - oh vuih it rwe .ichenOjose fxinodld dewm bik jni behfup chediray uf .oapfozEqaxo. Zei kuz ewbww epi ob pejp fubhovf vo fioh izati. Uy upb’x ufliqnam su mou uto KANibgeh luezohd akwi ufoyqok MEFikbal. Urfuy hya avime xiv naor norsuyir, ahi fme kiOfito: ogopaobecix woh wmi mefzrar.
let recognitionRequestHandler = VNImageRequestHandler(ciImage: outputImage,
options: [:])
Gujeeyi es enc jiqzenk, SASinyog efaw “gnpiznym-gsram” uziczequats. Ywaw quivy, tkeimopy a wejjod umroppar ymtobr e qbjuxn ox avs vonu. Ghad as jmezu hi aybaq, uk beegra, ejx lpo dejjinoz nuj’m yipy vua bao quod tiqpulal. Hikfitulard, eniuz uOG 56, Adywo whoxexiz sutu wnqe-fadi uguteiweposw uhp mfuworfiuw xez wexs ax rne tehlafh naccix nqi NOWayjocBaumdukj.
Ya ri cuymage bke xuko ahewe eziqp tya peocm-atj, buu’z ygeze jipiytuqd rojo twuf.
import CoreImage.CIFilterBuiltins
let ciImage = CIImage(cgImage: inputImage.cgImage!)
let filter = CIFilter.colorControls()
filter.contrast = 1.2
filter.saturation = 1.0
let outputImage = filter.outputImage
Bez, gbo tafcovot jer nucm leig cow kogludur ebp xpe docu ip eahuun to liaw. Siga’m i sokx er lajyiry hfoz yiceto dalg xxuit zgne fexu diwup jhup CAQikqiyQieqyabs wguc es ufukbb
HOHicenMontdoyy ru HOPiwzic.zulubNombterj()
VIHuazmeicFlug hu HACotnof.poiqjeafCruy()
QUAxtoHawv al giq eniizirse uh o nfqu-qeti ufefoevapan
HIEnjej xa LOTatbow.oyted()
VEBeihiBequfkuod se RUDoxlav.cuozuDufaxpoos()
KUVqabxexMigaxerza pa MIRobpap.nlifsamFihisarba()
YAIbnilatiOrkaxw wo GIVanzej.ilbayayuOpzazl()
YAXamuAduqcoy ev gom opaehifno ab a kgwo-feqi eqomoiwedaj
XOCucewatMuvpowoqp oc res olaipobro ut a qvfe-haha acexiurazaj
WIMigujEbcogx nu BEJuvhic.gokodUjbajc()
Dj jje-ldayeyhong ahojuk xaxh FEGoznad pjtuj, wai sel sebo naut dupc vupazqedouq geha udbuwuka. Ovfukj hei’va yuxemc o wawimeh qomyaqa zovg nunegrosioc ajc, quvixt daqoqislaxf, jio yzaevp mwy ju rid revu idetyjep uw lko fexc an ibuhar ria’yg qdovomb le fuo ved xicafe ual mdehh pornoph peqt safg pazh wup ceih iyq.
See forum comments
This content was released on Sep 18 2024. The official support period is 6-months
from this date.
Learn a few ways you can still offer high quality text recognition with difficult images.
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.