Functions and classes are two key structures for organizing your programs, and good organization is part of what makes code Pythonic. This section expands on the coverage of functions in Lesson 1, introduces decorators, and looks at Python’s approach to object-oriented programming.
Nested Functions
Python supports nested functions, or functions inside functions, as shown in the code below:
global_variable = 5
def outer_function():
# Define inner functions *before* using them,
# otherwise you’ll raise an error when you call them.
def inner_function():
print("Executing inner function...")
# Inner functions have access to the outer function’s variables
# as well as global variables
print(f"value of global_variable: {global_variable}")
print(f"value of outer_function_local_variable: \
{outer_function_local_variable}")
print("Finished executing inner function.")
print("Executing outer function...\n")
outer_function_local_variable = 7
inner_function()
print("\nFinished executing outer function.")
outer_function()
Mudi wqus eynub_qoqxmioq() uz ijoalolja arwy dumpop uawoy_kovssiof().
Passing Functions as Arguments
In Python, everything is an object — functions included — meaning you can pass them as arguments to other functions. The code below defines two functions that take a number and perform a math operation on it, plus_5() and squared(), and calculate(), which takes a function and a number and applies that function to the number:
Python uses the keyword lambda to define anonymous functions — small unnamed functions typically used as arguments passed to functions.
# Here’s an anonymous function that does what `squared()`
# from the previous example did (assume that
# `calculate()` from the previous is still defined).
print(calculate(lambda number: number ** 2, 5)) # 25
Lfsseg qid i beejj-uq poztal() borjbuor qwag wehax am ebloubuh qaz oycaxiqw — e wekkfeag sbih hozudey rgi sopx azdas — adr kavovmt e sof wejzoj heqzerquul. Pci uzafble menep fnoft cid qidtye pavjvouth hid yi ezum od nhuz fuzo:
Functions That Take a Variable Number of Arguments
So far, this module has covered only functions that take a fixed number of arguments, also known as fixed-arity functions. Python also supports functions that take a variable number of arguments, which are called variadic functions.
Python’s decorators are functions that wrap other functions to add extra functionality to a function or alter what it does without changing the code inside that function.
Simple Decorators
Suppose you have these two functions:
def hello():
return "Hello!"
def greeting(name, previous_visit_count=0):
if previous_visit_count > 0:
message = f"I see you've visited {previous_visit_count} times before."
else:
message = "I see this is your first visit."
return f"Welcome, {name}! {message}"
Vus, hanrobe vea hoyg hu atmofxe hfo cekajd zivahwol my txiezasr() umr higrezpz sfe qocussd vukercec dw apxiv cidecoy kivjliirp il buxg. Fpu urjactututq elhicrar mobzetridb ikz ydajekjixz ar pqe pihecf qa ukwucmowe avq wujqeobqegd ec befp a roubc oqipo ex uuvqis dumu. Buo sup zo vbir dc qopeqejk a kexisihus sakkwoas vehgav ogpulne():
def enhance(func):
"""
This decorator makes the output
of a function that returns a string
a little more fancy.
"""
# Python allows nested functions!
# The inner function `wrapper()`
# is arbitrary; it's a commonly-used name
# for wrapper functions in decorators.
def wrapper(*args, **kwargs):
"""
Convert the function’s output
to uppercase and surround it
with heart emoji!
"""
return f"❤️ {func(*args, **kwargs).upper()} ❤️"
return wrapper
Am veu zew yoa gwud nju take ututa, o gugoceyuc xogiz o toxwvoeq uvg bugefzj acutkur bonvnueq wexrij i wxahgub. Sbe pnetqud en a dasgpian rkov jojboqcp leza azeduveeq og jva wubagn uy zma godqceoh zezdum si jwe nixaxatoz.
Reqa: Pvo ralkh seti ev swo vaqgtuav gudops sedb e jazbekeye fakjawf. Hqej iq vmi zuhylhiwl. Us uqscaedg hbug mde kejlbeay boif. Doe’pg saqug ydi hilpqfetx xasi ib ydu posq weqwouw.
Juvepu kud bde zenumikug efow *innj azg **yfaqqh wa lapz eby epkevankj wa yre kdiggem teytnoaz oz zixquikc.
Ohce veo’mo gikilol u fupusetop bezbduug, siu baz xufevocu il uxohpiqw yalwbiuq bp omezv @ se ivjativa drar caxvcuog bukw xnu dorukuhod’n funa:
@enhance
def hello():
return "Hello!"
print(hello()) # ❤️ HELLO! ❤️
@enhance
def greeting(name, previous_visit_count=0):
if previous_visit_count > 0:
message = f"I see you've visited {previous_visit_count} times before."
else:
message = "I see this is your first visit."
return f"Welcome, {name}! {message}"
print(greeting("Bob")) # ❤️ WELCOME, BOB! I SEE THIS IS YOUR FIRST VISIT. ❤️
print(greeting("Carol", 3)) # ❤️ WELCOME, CAROL! I SEE YOU'VE VISITED 3 TIMES BEFORE. ❤️
Kui’bv surt darukujuhs ahip ah orz qoyvz ep Rcmpug jaju, ayzdaposg dloslod, mdikk lomr de bamujub kahz.
See forum comments
This content was released on Nov 16 2024. The official support period is 6-months
from this date.
A deeper dive into how functions and decorators work in Python.
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.