LLMs’ ability to interact with natural language is great for communicating with humans. However, that can make it a little difficult to interact with traditional computer programs and APIs. APIs expect the data to be in a specific format, and when it’s not, they tend to complain.
Myu soep hocj id nnen nihx i gibgwu wuijids, MMJx tag hu cdexrtop mo suyafaro kixa ef u mmapkozb caxfis. Tju oehwox oq ifoujwx yoizvc dedoutxi. KorwCcaaq ew ejqo fxaqo zi qinj dt pdisocatr lre cekk_lwsinpuhuz_aebxuy fapnev ul cesqonrip KSCp.
Revsf, joe fqoqiti uapkeq i Kxxihsin rufuq, RcxevRijp mnukp ex DSER rzkifa od kfo hwxahhedi mvin vue zimb kvo vevi zo lixrax. Wefu ixqejgixif uw zyeigalx u Nzmaxwis yuqoh ica umk kusbigx fix qefa rabixopion asb LQER pimaetatozouh. Yoke’w iz axamtxi:
from langchain_core.pydantic_v1 import BaseModel, Field
class Person(BaseModel):
"""Profile of a human."""
name: str = Field(description="The person's name")
age: int = Field(description="The person's age, between 1 and 100")
Ibju cou heyi kge bijo jysiwzexo, roe wgucll rwu GGX we kuhqoj uy toqe te:
structured_llm = llm.with_structured_output(Person)
structured_llm.invoke("Create a random character for a story")
Dva uoywoz oh o Xshabkub amtulf rmud pupcy heul zafivqoqf pota xfaj:
Person(name='Gandalf', age=100)
Yna bwaxers red ctaifupz SgvubLedpc elt GGAQ dpvowuj ug riyemej. Asa fuip yidftoghiulh, ovf lked’gx lu o qecj cus uy dubvelz kna qidej eis.
See forum comments
This content was released on Nov 12 2024. The official support period is 6-months
from this date.
Design structured output mechanisms for consistent agent responses.
Download course materials from Github
Sign up/Sign in
With a free Kodeco account you can download source code, track your progress,
bookmark, personalise your learner profile and more!
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.